Fourier series of functions associated with higher-order Bernoulli polynomials
نویسندگان
چکیده
منابع مشابه
Fourier series of higher-order Bernoulli functions and their applications
In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.
متن کاملSeries of sums of products of higher-order Bernoulli functions
It is shown in a previous work that Faber-Pandharipande-Zagier's and Miki's identities can be derived from a polynomial identity, which in turn follows from the Fourier series expansion of sums of products of Bernoulli functions. Motivated by and generalizing this, we consider three types of functions given by sums of products of higher-order Bernoulli functions and derive their Fourier series ...
متن کاملSymmetry Properties of Higher-Order Bernoulli Polynomials
Let p be a fixed prime number. Throughout this paper Zp, Qp, and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp. For x ∈ Cp, we use the notation x q 1 − q / 1 − q . Let UD Zp be the space of uniformly differentiable functions on Zp, and let vp be the normalized exponential valuation of Cp wi...
متن کاملOld and New Identities for Bernoulli Polynomials via Fourier Series
The Bernoulli polynomials Bk restricted to 0, 1 and extended by periodicity have nth sine and cosine Fourier coefficients of the formCk/n . In general, the Fourier coefficients of any polynomial restricted to 0, 1 are linear combinations of terms of the form 1/n . If we can make this linear combination explicit for a specific family of polynomials, then by uniqueness of Fourier series, we get a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Nonlinear Sciences and Applications
سال: 2017
ISSN: 2008-1898,2008-1901
DOI: 10.22436/jnsa.010.05.25